\qquad
In the last class we studied hypothetical willingness-to-pay (WTP) for Guaranteed Tender beef. Now we will look at actual WTPs collected by my colleague, Jayson Lusk. Also, we will use a Solver algorithm to discover the profit-maximizing premium instead of the large spreadsheet constructed in the last class.

We will assume that this sample is a representative sample of all consumers, and thus conclude that if a premium maximizes profits for this sample it maximizes profits for all consumers. Like in the previous worksheet, assume the extra cost of producing Guaranteed Tender steaks is $\$ 0.07$ per pound. Notice the units of WTP....

Step 1: Download the data at:
http:// seeds.okstate.edu/SeedsPPP/CN,1/TenderBeef/JaysonSteakData.xls
Step 2: Create variables named Premium, Cost, and Profits in cells D7 through E9. Make sure the cells with the values are given names of Premium, Cost, and Profits. Both Premium and Cost have hypothetical values, and Profits will be given a formula subsequently.

Step 3: In column C create a variable that calculates the profits made from each observation, based on whether the WTP exceeds the premium. The profits if the steak is purchased equals the premium minus the cost, and the person buys the steak if their WTP is greater than or equal to the cost.

Step 4: Set the Profits equal to the sum of the profits from each observation.
Step 5: Use Solver to calculate the profit-maximizing premium. First try the Solver starting out with a premium of $\$ 1.00$. Then try the Solver with a premium of $\$ 0.00$. Then try it at $\$ 10.00 \ldots$

What is the profit maximizing premium?

Worksheet completed on \qquad
A B
Data concerns experiment conducted by Dr. Jayson L. Lusk.
WTP is consumers' willingness-to-pay extra for a
Certified Angus Beef steak over a regular steak

WTP = bid in BDM auction for exchanging regular steak for a Certified Angus Beet Observation

WTP (\$ / lb)

Premium	$\$$	3.33
Cost	$\$$	0.070
Profits	$\$$	68.46

